Trombe wall
Trombe walls use a combination of thermal mass and glazing to collect and store solar radiation so that it can be used to heat buildings. The broad idea was patented by Edward Morse in 1881, but it was named after French engineer Felix Trombe, who along with architect Jacques Michel used trombe walls as an architectural component in the 1960’s.
A thermally massive wall with good solar absorption characteristics (perhaps with a matt, dark-coloured surface) is orientated facing towards the direction of the sun. The wall is constructed behind a glazed façade that protects it from external conditions. There is generally a space between the glazing and the wall. This space can be very narrow, just sufficient to allow air movement between the glazing and the wall and to provide access for cleaning, or it can be large enough to be habitable.
Solar radiation that penetrates through the glazing will heat up the wall, but the resulting emission of long-wave infrared radiation from the wall will not re-transmit back through the glazing which is opaque to long-wave infrared radiation. This creates an effect similar to that which allows greenhouses to trap solar radiation.
Heat built up in the wall is slowly released into adjacent spaces by radiation and convection. Depending on the thermal mass of the wall, this heat can be released over long periods of time, moderating fluctuations in conditions. This is a form of ‘passive’ solar heating, as opposed to an ‘active’ building services heating system.
The design of trombe walls needs to enable them to provide solar heating during colder periods, but not to generate overheating during warmer periods. This might require the use of external vents, shading or overhanging eaves to limit peak gains and to enable night time cooling.
The design may also include vents at the top and bottom of the wall (which may be controllable or even include mechanical assistance) to allow more rapid heat transfer between the wall and the adjacent space, or it may rely entirely on conduction through the wall. Where vents are included, cooler air from the adjacent space will enter through the lower vent, will be heated by the wall and so will rise, and will then return to the adjacent space through the upper vent. Closing the vents at night will prevent reverse flows occurring and removing heat from the space.
Typically the wall will be 20-40 cm thick, made out of high heat capacity materials such as masonry or concrete (or even containers filled with water), with the absorbed heat taking up to 10 hours to conduct to the interior.
Installations can also include solar thermal systems to generate hot water.
The efficiency of trombe walls can be improved by the use of double glazing with a low-e coating to reduce heat losses to the outside. Low-e coatings reduce the effective emissivity of the surface of glass so that it reflects, rather than absorbs, a higher proportion of long-wave infra-red radiation. Ideally, the glazing should have exterior insulation, shutters or blinds to prevent heat loss during the night.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
- Cross ventilation.
- Decrement delay.
- Diaphragm wall.
- Dynamic façade.
- Ground energy options.
- Insulation.
- Low-e glass.
- Natural ventilation.
- Passive building design.
- Passive ventilation.
- Solar chimney.
- Solar thermal systems.
- Stack effect.
- Thermal admittance.
- Thermal labyrinth.
- Thermal mass.
- Types of ventilation.
- Ventilation.
- Wall types.
Featured articles and news
How can digital twins boost profitability within construction?
A brief description of a smart construction dashboard, collecting as-built data, as a s site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure bill oulined
With reactions from IHBC and others on its potential impacts.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Architects Academy at an insulation manufacturing facility
Programme of technical engagement for aspiring designers.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.